

Part IA Flood Monitoring and Warning System

Lent Term 2024, Department of Engineering, University of Cambridge

Your team has been tasked with building the computational backend
(library) to a new real-time flood warning system for England. The
library should:

	Fetch real-time river level data over the Internet from the
Department for Environment Food and Rural Affairs data service [https://data.gov.uk/publisher/department-for-environment-food-and-rural-affairs].

	Support specified data query types on river level monitoring
stations.

	Analyse monitoring station data in order to assess flood risks,
and issue flood warnings for areas of the country.

The mandated development practices are listed in the Requirements
section. The library is required to support specific query interfaces
(API [https://en.wikipedia.org/wiki/Application_programming_interface]),
as outlined in the Deliverables section, which form the public
interface of the library. Another company has been contracted to build
a user interface using the prescribed public interfaces to the library,
hence they cannot be changed.

Development team

Your development team is your laboratory group.

Project specification

	1. Requirements
	1.1. Language and library structure

	1.2. Documentation

	1.3. Development practices

	1.4. Data source

	2. Deliverables
	2.1. Milestone 1

	2.2. Milestone 2

Appendix: Getting started and assessment

	1. Getting started

	2. Development tools and practices

	3. Help and feedback

	4. Suggestions for experienced developers

	5. Learning objectives and assessment

Document license and copyright

These documents are licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License. See
http://creativecommons.org/licenses/by-sa/4.0/ for the license.

Copyright 2016-2024 by Garth N. Wells (gnw20@cam.ac.uk).

Documentation repository

These documents are managed at
https://github.com/CambridgeEngineering/PartIA-Computing-Lent-doc.

1. Requirements

This section defines the technical requirements for the
implementation.

1.1. Language and library structure

Library is to be developed in Python 3 and using multiple modules
(files). Each file should collect related functionality.

1.2. Documentation

All classes, methods (a function that belongs to a class) and functions
must be documented with a ‘docstring’. The docstring shall explain what
the class or function does. For a function, the docstring shall make
clear the purpose, what arguments are expected and what is returned.

Simple examples of Python docstrings can be viewed here [https://en.wikipedia.org/wiki/Docstring#Python].

1.3. Development practices

The quality of a flood warning software library is paramount;
implementation errors could put lives at risk and lead to substantial
financial losses. You are therefore required to adopt software
engineering best practices. Your team is required to:

	Use the Git [https://git-scm.com/] version control system (see
Using Git).

	Provide automated tests for your implementations using pytest [http://docs.pytest.org//] to demonstrate the quality of the
system (see Test framework)

	Use automated continuous integration testing (see
Automated testing)

1.4. Data source

The system is to be built on the (near) real-time river level data at
the nearly 2000 monitoring stations that is made available by the
Department for Environment Food and Rural Affairs (DEFRA) at
https://environment.data.gov.uk/. For most stations river level data is
updated every 15 minutes. The data service is summarised at
https://data.gov.uk/dataset/real-time-and-near-real-time-river-level-data1.

	REST interface for data retrieval
	Data is fetched from https://environment.data.gov.uk/ using a REST
interface [https://en.wikipedia.org/wiki/Representational_state_transfer].
With a suitably formed URL (a string), as defined in the service
documentation, the server returns the requested data as a JSON [http://www.json.org/] object. JSON objects are represented in
Python as data structures made up of dictionaries, lists and strings.
JSON objects are straightforward to manipulate from Python. The
interface to the DEFRA service is documented at
https://environment.data.gov.uk/flood-monitoring/doc/reference.

2. Deliverables

This section defines the project deliverables. Functionality is to be
implemented in the module named floodsystem.

Milestones and deadlines

Project deliverables/tasks are structured into two milestones.
Milestone 1 must be delivered by the interim marking session, and
Milestone 2 by the final marking session. You may deliver early by
signing off at the Help Desk.

Clarifications

Clarifications can be sought at the Help Desk.

Task completion, interfaces and demonstration programs

Each task requires the implementation of functionality that can be
accessed via a specified interface, usually a function signature
(function name and arguments, and return values). At the end of each
task is a description of a demonstration program that must be be
provided. Demonstration programs must have the structure:

def run():
 # Put code here that demonstrates functionality

if __name__ == "__main__":
 run()

You should expect to run demonstration programs during a marking
session.

Important

Conforming to the specified public interface is critical as this
will allow the interface team to work independently of your
development (and it will allow automated testing of your work).

Testing

Write tests as you progress through the tasks (see Test framework)
and add deliverables and tests to the automated testing system (see
Automated testing).

Tip

To deliver on a Task, you will often want to implement more functions
than just the required function interface. Use additional functions
to:

	Modularise and simplify your library.

	Allow re-use of functions across tasks.

	Simplify testing.

As you work through the Tasks, look for opportunities to
re-structure code in order to re-use functions.

Units

Distances in kilometres (km) and heights in metres (m).

2.1. Milestone 1

Processing of monitoring station properties.

	Deadline:

	Mid-term sign-up session

	Points:

	4

Caution

Do not use the ‘representative output’ in your pytest tests.
Representative output is provided to help you, but would not be part
of a real contract. Moreover, you are working with real-time data
which will change.

2.1.1. Task 1A: build monitoring station data

This task has been completed for you in the template repository.

	In a submodule station, create a class MonitoringStation that
represents a monitoring station, and has attributes:

	Station ID (string)

	Measurement ID (string)

	Name (string)

	Geographic coordinate (tuple(float, float))

	Typical low/high levels (tuple(float, float))

	River on which the station is located (string)

	Closest town to the station (string)

	Implement the methods __init__ to initialise a station with
data, and __repr__ for printing a description of the station.

	In the submodule stationdata implement a function that returns a
list [https://docs.python.org/3/library/stdtypes.html#lists] of
MonitoringStation objects (for active stations with water level
monitoring). To avoid excessive data requests, the function should
save fetched data to file, and then optionally read from a cache
file. The function should have the signature:

def build_station_list(use_cache=True):

The data should be retrieved from the online service documented at
http://environment.data.gov.uk/flood-monitoring/doc/reference.

Demonstration program

In the program file Task1A.py, use the function
stationdata.build_station_list to build a list of monitoring
stations. Print the total number of stations, and a summary of the
stations named ‘Bourton Dickler’, ‘Surfleet Sluice’ and ‘Gaw Bridge’.
Representative output is:

Number of stations: 1840
Station name: Bourton Dickler
 id: http://environment.data.gov.uk/flood-monitoring/id/stations/1029TH
 measure id: http://environment.data.gov.uk/flood-monitoring/id/measures/1029TH-level-stage-i-15_min-mASD
 coordinate: (51.874767, -1.740083)
 town: Little Rissington
 river: Dikler
 typical range: (0.068, 0.42)
Station name: Surfleet Sluice
 id: http://environment.data.gov.uk/flood-monitoring/id/stations/E2043
 measure id: http://environment.data.gov.uk/flood-monitoring/id/measures/E2043-level-stage-i-15_min-mASD
 coordinate: (52.845991, -0.100848)
 town: Surfleet Seas End
 river: River Glen
 typical range: (0.15, 0.895)
Station name: Gaw Bridge
 id: http://environment.data.gov.uk/flood-monitoring/id/stations/52119
 measure id: http://environment.data.gov.uk/flood-monitoring/id/measures/52119-level-stage-i-15_min-mASD
 coordinate: (50.976043, -2.793549)
 town: Kingsbury Episcopi
 river: River Parrett
 typical range: (0.231, 0.971)

2.1.2. Task 1B: sort stations by distance

	In the submodule geo implement a function that, given a list of
station objects and a coordinate p, returns a list [https://docs.python.org/3/library/stdtypes.html#lists] of
(station, distance) tuples [https://docs.python.org/3/library/stdtypes.html#tuples], where
distance (float) is the distance of the station
(MonitoringStation) from the coordinate p. The returned list
should be sorted by distance. The required function signature is:

def stations_by_distance(stations, p):

where stations is a list of MonitoringStation objects and
p is a tuple of floats for the coordinate p.

Tip

The distance between two geographic coordinates (latitude/longitude)
is computed using the haversine formula [https://en.wikipedia.org/wiki/Haversine_formula]. You could
program the haversine formula, or you could use a Python library to
perform the computation for you, e.g.
https://pypi.org/project/haversine/.

Hint

Build a list of all (station, distance) tuples, and use the
provided function utils.sort_by_key to produce a list that is
sorted by the second entry in the tuple.

Demonstration program

Provide a program file Task1B.py that uses
geo.stations_by_distance and prints a list of tuples (station
name, town, distance) for the 10 closest and the 10 furthest stations
from the Cambridge city centre, (52.2053, 0.1218). The closest 10
entries (e.g., x[:10]) in the list may be:

[('Cambridge Jesus Lock', 'Cambridge', 0.8402364350834995), ('Bin Brook', 'Cambridge', 2.502274086951454), ("Cambridge Byron's Pool", 'Grantchester', 4.0720438555077125), ('Cambridge Baits Bite', 'Milton', 5.115589516578674), ('Girton', 'Girton', 5.227070345811418), ('Haslingfield Burnt Mill', 'Haslingfield', 7.044388165868453), ('Oakington', 'Oakington', 7.128249171700346), ('Stapleford', 'Stapleford', 7.265694306995238), ('Comberton', 'Comberton', 7.7350743760373675), ('Dernford', 'Great Shelford', 7.993861351711722)]

and the furthest 10 (e.g., x[-10:]):

[('Boscadjack', 'Wendron', 440.0026482838576), ('Gwithian', 'Gwithian', 442.05491558132354), ('Helston County Bridge', 'Helston', 443.37824966454974), ('Loe Pool', 'Helston', 445.07184458260684), ('Relubbus', 'Relubbus', 448.64944322554413), ('St Erth', 'St Erth', 449.03415711886015), ('St Ives Consols Farm', 'St Ives', 450.0734690482922), ('Penzance Tesco', 'Penzance', 456.3857579793324), ('Penzance Alverton', 'Penzance', 458.5766422710278), ('Penberth', 'Penberth', 467.53367291629183)]

2.1.3. Task 1C: stations within radius

	In the submodule geo implement a function that returns a list [https://docs.python.org/3/library/stdtypes.html#lists] of all
stations (type MonitoringStation) within radius r of a
geographic coordinate x. The required function signature is:

def stations_within_radius(stations, centre, r):

where stations is a list of MonitoringStation objects,
centre is the coordinate x and r is the radius.

Demonstration program

Provide a program file Task1C.py that uses the function
geo.stations_within_radius to build a list of stations within 10
km of the Cambridge city centre (coordinate (52.2053, 0.1218)). Print
the names of the stations, listed in alphabetical order.
Representative output:

['Bin Brook', 'Cambridge Baits Bite', "Cambridge Byron's Pool",
 'Cambridge Jesus Lock', 'Comberton', 'Dernford', 'Girton',
 'Haslingfield Burnt Mill', 'Lode', 'Oakington', 'Stapleford']

2.1.4. Task 1D: rivers with a station(s)

	In the submodule geo develop a function that, given a list of
station objects, returns a container (list/tuple/set)
with the names of the rivers with a monitoring station. The function
should have the signature:

def rivers_with_station(stations):

where stations is a list of MonitoringStation objects. The returned
container should not contain duplicate entries.

Tip

Consider returning a Python set [https://docs.python.org/3/library/stdtypes.html#set] object. A
set contains only unique elements. This is useful for building a
collection of river names since a set will never contain duplicate
entries, no matter how many times a river name is added. A brief
example of using a set is available here [https://docs.python.org/3/tutorial/datastructures.html#sets].

	In the submodule geo implement a function that returns a Python
dict (dictionary) that maps river names (the ‘key’) to a list of
station objects on a given river. The function should have the
signature:

def stations_by_river(stations):

where stations is a list of MonitoringStation objects.

Demonstration program

Provide a program file Task1D.py that:

	Uses geo.rivers_with_station to print how many rivers
have at least one monitoring station (Representative result: 843)
and prints the first 10 of these rivers in alphabetical order.
Representative output:

843 stations. First 10 - ['Addlestone Bourne', 'Adur', 'Aire Washlands', 'Alconbury Brook',
 'Aldbourne', 'Aller Brook', 'Alre', 'Alt', 'Alverthorpe Beck', 'Ampney Brook']

	Uses geo.stations_by_river to print the names of the stations
located on the following rivers in alphabetical order:

	‘River Aire’

Representative output:

['Airmyn', 'Apperley Bridge', 'Armley', 'Beal Weir Bridge', 'Bingley', 'Birkin Holme Washlands', 'Carlton Bridge', 'Castleford', 'Chapel Haddlesey', 'Cononley', 'Cottingley Bridge', 'Ferrybridge Lock', 'Fleet Weir', 'Gargrave', 'Kildwick', 'Kirkstall Abbey', 'Knottingley Lock', 'Leeds Crown Point', 'Saltaire', 'Snaygill', 'Stockbridge']

	‘River Cam’

Representative output:

['Cam', 'Cambridge', 'Cambridge Baits Bite', 'Cambridge Jesus Lock', 'Dernford', 'Weston Bampfylde']

	‘River Thames’

Representative output:

['Abingdon Lock', 'Bell Weir', 'Benson Lock', 'Boulters Lock', 'Bray Lock', 'Buscot Lock', 'Caversham Lock', 'Chertsey Lock', 'Cleeve Lock', 'Clifton Lock', 'Cookham Lock', 'Cricklade', 'Culham Lock', 'Days Lock', 'Ewen', 'Eynsham Lock', 'Farmoor', 'Godstow Lock', 'Goring Lock', 'Grafton Lock', 'Hannington Bridge', 'Hurley Lock', 'Iffley Lock', 'Kings Lock', 'Kingston', 'Maidenhead', 'Mapledurham Lock', 'Marlow Lock', 'Marsh Lock', 'Molesey Lock', 'Northmoor Lock', 'Old Windsor Lock', 'Osney Lock', 'Penton Hook', 'Pinkhill Lock', 'Radcot Lock', 'Reading', 'Romney Lock', 'Rushey Lock', 'Sandford-on-Thames', 'Shepperton Lock', 'Shifford Lock', 'Shiplake Lock', 'Somerford Keynes', 'Sonning Lock', 'St Johns Lock', 'Staines', 'Sunbury Lock', 'Sutton Courtenay', 'Teddington Lock', 'Thames Ditton Island', 'Trowlock Island', 'Walton', 'Whitchurch Lock', 'Windsor Park']

2.1.5. Task 1E: rivers by number of stations

	Implement a function in geo that determines the N rivers with the
greatest number of monitoring stations. It should return a list
of (river name, number of stations) tuples, sorted by the number of
stations. In the case that there are more rivers with the same
number of stations as the N th entry, include these rivers in the
list. The function should have the signature:

def rivers_by_station_number(stations, N):

where stations is a list of MonitoringStation objects.

Demonstration program

Provide a program file Task1E.py that prints the list of (river, number
stations) tuples when N = 9. Representative result is:

[('Thames', 55), ('River Great Ouse', 31), ('River Avon', 30), ('River Calder', 24), ('River Aire', 21), ('River Severn', 20), ('River Derwent', 18), ('River Stour', 16), ('River Wharfe', 14), ('River Trent', 14), ('Witham', 14)]

The above list has more then 9 entries since a number of rivers have
14 stations.

2.1.6. Task 1F: typical low/high range consistency

It is suspected that some stations have inconsistent data for typical
low/high ranges, namely that (i) no data is available; or (ii) the
reported typical high range is less than the reported typical low. This
needs to be checked so that stations with inconsistent data are not used
erroneously in flood warning analysis.

	Add a method to the MonitoringStation class that checks the
typical high/low range data for consistency. The method should return
True if the data is consistent and False if the data is
inconsistent or unavailable. The method should have the signature:

def typical_range_consistent(self):

	Implement in the submodule station a function that, given a list of
station objects, returns a list of stations that have inconsistent data.
The function should use MonitoringStation.typical_range_consistent,
and should have the signature:

def inconsistent_typical_range_stations(stations):

where stations is a list of MonitoringStation objects.

Demonstration program

Provide a program file Task1F.py that builds a list of all
stations with inconsistent typical range data. Print a list of
station names, in alphabetical order, for stations with inconsistent
data. The representative result (at the time of writing) is:

['Addlestone', 'Airmyn', 'Allerford', 'Arundel Queen St Bridge', 'Blacktoft', 'Braunton', 'Brentford', 'Broomfleet Weighton Lock', 'East Hull Hedon Road', 'Eccelsfield Morrisons', 'Fleetwood', 'Goole', 'Gravesend', 'Hedon Thorn Road Bridge', 'Hedon Westlands Drain', 'Hull Barrier Victoria Pier', 'Hull High Flaggs, Lincoln Street', "King's Lynn", 'Littlehampton', 'Paull', 'Salt end', 'Silloth Docks', 'Stone Creek', 'Templers Road', 'Topsham', 'Totnes', 'Truro Harbour', 'Weare Giffard', 'Westbrook Mill', 'Wilfholme PS', 'Wilfholme PS Hull Level']

2.1.7. Optional extensions

	Display the location of each station on a map (perhaps from Google
Maps). Suitable Python libraries tools for this include Bokeh [http://bokeh.pydata.org/] and Plotly [https://plot.ly/python/#maps].

	Explore what other station information is available in the retrieved
data. The function stationdata.build_station_list is a good place
to start. Extend MonitoringStation to store any interesting
station data as attributes.

	Advanced: The MonitoringStation attributes (station data) are
properties of the station and will not generally change. However, we
could accidentally and mistakenly change an attribute in our code. For
flood forecasting and warning, such an error could have dire
consequences. Use property [https://docs.python.org/3/library/functions.html#property]
decorators to prevent accidental modification of the attributes.

2.2. Milestone 2

The focus of the Milestone 2 is processing monitoring station real-time
data to warn of flood risks.

	Deadline:

	End-of-term sign-up session

	Points:

	8

Caution

Representative output for each demonstration program is provided as a
guide. You will be working with real-time data, so the precise output
will change with time.

2.2.1. Task 2A: fetch real-time river levels

This task has been completed for you in the template repository.

	Extend the MonitoringStation class with an attribute
latest_level (float), and implement in the stationdata
submodule a function that updates the latest water level for all
stations in a list using data fetched from the Internet. If level
data is not available, the attribute latest_level should be set
to None. The function should have the signature:

def update_water_levels(stations):

where stations is a list of MonitoringStation objects.

Demonstration program

Provide a program file Task2A.py that sets the latest water level
for all stations, and prints the latest levels at the stations
‘Bourton Dickler’, ‘Surfleet Sluice’, ‘Gaw Bridge’, ‘Hemingford’ and
‘Swindon’. Typical output is:

Station name and current level: Bourton Dickler, 0.146
Station name and current level: Surfleet Sluice, 0.84
Station name and current level: Gaw Bridge, 0.463
Station name and current level: Hemingford, 0.197
Station name and current level: Swindon, 1.192

2.2.2. Task 2B: assess flood risk by level

	Add a method to MonitoringStation that the returns the latest water
level as a fraction of the typical range, i.e. a ratio of 1.0
corresponds to a level at the typical high and a ratio of 0.0
corresponds to a level at the typical low. The method should have the
signature:

def relative_water_level(self):

If the necessary data is not available or is inconsistent, the
function should return None.

	In the submodule flood, implement a function that returns a list of
tuples, where each tuple holds (i) a station (object) at which the
latest relative water level is over tol and (ii) the relative
water level at the station. The returned list should be sorted by the
relative level in descending order. The function should have the
signature:

def stations_level_over_threshold(stations, tol):

where stations is a list of MonitoringStation objects.
Consider only stations with consistent typical low/high data.

Demonstration program

Provide a program file Task2B.py that prints the name of each
station at which the current relative level is over 0.8, with the
relative level alongside the name (do not forget to handle the cases
of inconsistent range data). Typical output will be of the form:

Ledgard Bridge 3.982
Godstow Lock 1.56198347107438
Windyridge Road 1.4470588235294117
Castle Mill (Bedford) 1.3333333333333328
Newark Weir 1.249999999999988
Cam 1.1813725490196074
Hayes Basin 1.166666666666667
Eckington Sluice 1.0875462392108504
Romney Lock 1.0829268292682928
Pinkhill Lock 1.0524475524475525
.
.

Explore your implementation for different tolerances.

2.2.3. Task 2C: most at risk stations

	Implement a function in the submodule flood that returns a list of
the N stations (objects) at which the water level, relative to the
typical range, is highest. The list should be sorted in descending
order by relative level. The function should have the signature:

def stations_highest_rel_level(stations, N):

where stations is a list of MonitoringStation objects.

Demonstration program

Provide a program file Task2C.py that prints the names of the 10
stations at which the current relative level is highest, with the
relative level beside each station name. Typical output will be of
the form:

Ledgard Bridge 3.982
Godstow Lock 1.56198347107438
Windyridge Road 1.4470588235294117
Castle Mill (Bedford) 1.3333333333333328
Newark Weir 1.249999999999988
Cam 1.1813725490196074
Hayes Basin 1.166666666666667
Eckington Sluice 1.0875462392108504
Romney Lock 1.0829268292682928
Pinkhill Lock 1.0524475524475525

2.2.4. Task 2D: level data time history

This task has been completed for you in the template repository.

	Implement in the submodule datafetcher a function that retrieves
from the Internet the water level data for a given station ‘measure
id’ over the period from the current time back to d days ago. It
should return a tuple with the first entry being the sample times and
the second entry being the water levels. The function should have
the signature:

def fetch_measure_levels(measure_id, dt):

Typical use to retrieve the level data at a station over the past 10
days would be:

import datetime
dt = 10
dates, levels = fetch_measure_levels(station.measure_id,
 dt=datetime.timedelta(days=dt))

Demonstration program

Provide a program file Task2D.py that fetches and prints the
level history at the station ‘Cam’ over the past 2 days. Typical
output:

2017-01-08 04:00:00+00:00 0.819
2017-01-08 03:45:00+00:00 0.819
2017-01-08 03:30:00+00:00 0.819
2017-01-08 03:15:00+00:00 0.819
2017-01-08 03:00:00+00:00 0.819
2017-01-08 02:45:00+00:00 0.819
2017-01-08 02:30:00+00:00 0.819
2017-01-08 02:15:00+00:00 0.819
2017-01-08 02:00:00+00:00 0.82
2017-01-08 01:45:00+00:00 0.82
.
.

2.2.5. Task 2E: plot water level

	Implement in a submodule plot a function that displays a plot (using
Matplotlib [http://matplotlib.org/]) of the water level data
against time for a station, and include on the plot lines for the
typical low and high levels. The axes should be labelled and use the
station name as the plot title. The function should have the
signature:

def plot_water_levels(station, dates, levels):

where station is a MonitoringStation object.

Hint

Example code to display a plot using Matplotlib:

import matplotlib.pyplot as plt
from datetime import datetime, timedelta

t = [datetime(2016, 12, 30), datetime(2016, 12, 31), datetime(2017, 1, 1),
 datetime(2017, 1, 2), datetime(2017, 1, 3), datetime(2017, 1, 4),
 datetime(2017, 1, 5)]
level = [0.2, 0.7, 0.95, 0.92, 1.02, 0.91, 0.64]

Plot
plt.plot(t, level)

Add axis labels, rotate date labels and add plot title
plt.xlabel('date')
plt.ylabel('water level (m)')
plt.xticks(rotation=45);
plt.title("Station A")

Display plot
plt.tight_layout() # This makes sure plot does not cut off date labels

plt.show()

	Optional: In place of Matplotlib, try using a web-centric plotting
library such as Bokeh [http://bokeh.pydata.org/] or Plotly [https://plot.ly/python/].

	Optional extension: Generalise your implementation such that it takes
a list of up to 6 stations displays the level at each station as
subplot inside a single plot.

Demonstration program

Provide a program file Task2E.py that plots the water levels over
the past 10 days for the 5 stations at which the current relative
water level is greatest.

2.2.6. Task 2F: function fitting

Least-squares polynomial fit

A least-squares polynomial fit is finding a polynomial that ‘best’
fits data points in the least-squares sense, i.e. for a set of
\(n\) data points

\[((x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1}))\]

the best-fit polynomial \(f(x)\) minimises the error

\[e = \sum_{i=0}^{n-1} (y_{i} - f(x_{i}))^{2}.\]

Details of how to compute least-squares fits is covered in Part IB.

	In a submodule analysis implement a function that given the water
level time history (dates, levels) for a station computes a
least-squares fit of a polynomial of degree p to water level data.
The function should return a tuple of (i) the polynomial object and
(ii) any shift of the time (date) axis (see below). The function
should have the signature:

def polyfit(dates, levels, p):

Typical usage for a polynomial of degree 3 would be:

poly, d0 = polyfit(dates, levels, 3)

where poly is a numpy.poly1d [https://docs.scipy.org/doc/numpy/reference/generated/numpy.poly1d.html]
object an d0 is any shift of the date (time) axis.

Hint

To work with dates as function arguments, e.g. a polynomial that
depends on time, the dates need to be converted to floats.
Matplotlib has a function date2num [https://matplotlib.org/api/dates_api.html#matplotlib.dates.date2num]
that from a list of datetime objects returns a list of
float, where the floats are the time in days (including
fractions of days) since the year 0001:

import matplotlib
x = matplotlib.dates.date2num(dates)

Hint

NumPy has tools for computing least-squares fits to data. The below
example computes a least-squares fit for some data points, and
plots the data points and the least-squares polynomial:

import numpy as np
import matplotlib.pyplot as plt

Create set of 10 data points on interval (0, 2)
x = np.linspace(0, 2, 10)
y = [0.1, 0.09, 0.23, 0.34, 0.78, 0.74, 0.43, 0.31, 0.01, -0.05]

Find coefficients of best-fit polynomial f(x) of degree 4
p_coeff = np.polyfit(x, y, 4)

Convert coefficient into a polynomial that can be evaluated,
e.g. poly(0.3)
poly = np.poly1d(p_coeff)

Plot original data points
plt.plot(x, y, '.')

Plot polynomial fit at 30 points along interval
x1 = np.linspace(x[0], x[-1], 30)
plt.plot(x1, poly(x1))

Display plot
plt.show()

Caution

In the above example, if we changed the x interval (0, 2) to
(10000, 10002), i.e.:

x = np.linspace(10000, 10002, 10)

NumPy prints the warning message:

RankWarning: Polyfit may be poorly conditioned warnings.warn(msg, RankWarning)

This message is warning that floating point round-off errors will
be significant and will affect accuracy. In simple terms, the
issues is that when we raise a number between 10000 and 10002 to a
power, small but important differences are effectively ‘lost’.

This issues arises if we work with dates converted to floats using
matplotlib.dates.date2num since it returns the number of days
since the origin of the Gregorian calendar. The numbers will
therefore be large. A way to improve the situation is with a
change-of-variable:

import numpy as np
import matplotlib.pyplot as plt

Create set of 10 data points on interval (1000, 1002)
x = np.linspace(10000, 10002, 10)
y = [0.1, 0.09, 0.23, 0.34, 0.78, 0.74, 0.43, 0.31, 0.01, -0.05]

Using shifted x values, find coefficient of best-fit
polynomial f(x) of degree 4
p_coeff = np.polyfit(x - x[0], y, 4)

Convert coefficient into a polynomial that can be evaluated
e.g. poly(0.3)
poly = np.poly1d(p_coeff)

Plot original data points
plt.plot(x, y, '.')

Plot polynomial fit at 30 points along interval (note that polynomial
is evaluated using the shift x)
x1 = np.linspace(x[0], x[-1], 30)
plt.plot(x1, poly(x1 - x[0]))

Display plot
plt.show()

	In the submodule plot, add a function that plots the water level
data and the best-fit polynomial. The function must have the
signature:

def plot_water_level_with_fit(station, dates, levels, p):

where station is a MonitoringStation object.

Demonstration program

Provide a program file Task2F.py that for each of the 5 stations
at which the current relative water level is greatest and for a time
period extending back 2 days, plots the level data and the best-fit
polynomial of degree 4 against time. Show the typical range low/high
on your plot.

Caution

Fitting high-degree polynomials to data is notoriously tricky,
especially if the data is not very smooth (as will often be the case
with water level data). The problem is that oscillations can appear
at the ends of the interval. The is known as Runge’s phenomenon [https://en.wikipedia.org/wiki/Runge's_phenomenon]. You can
observe this with the river level data by increasing the polynomial
degree, say to 10, and the time interval, say to 10 days.

2.2.7. Task 2G: issuing flood warnings for towns

	Using your implementation, list the towns where you assess the
risk of flooding to be greatest. Explain the criteria that you have
used in making your assessment, and rate the risk at ‘severe’,
‘high’, ‘moderate’ or ‘low’.

Note

This task is an opportunity to demonstrate your creativity and
technical insights.

Tip

Consider how you could forecast whether the water level at a
station is rising or falling.

2.2.8. Optional extensions

	Show all stations on a map, and indicate by colour stations that are
(i) below the typical range; (ii) within the typical range; (iii)
above the typical range; or (iv) for which there is not level data.

	Provide a web-based interface to your flood warning system.

	Incorporate rainfall data from
http://environment.data.gov.uk/flood-monitoring/doc/reference into
your system.

	Explore what other data from
http://environment.data.gov.uk/flood-monitoring/doc/reference you
could use to improve your monitoring and warning system. To start,
examine the data that is already being retrieved but has not been
used.

1. Getting started

	Read the Requirements section.

	Install, configure and test your development environment
(Development environment).

	Create a Git repository for your team/project (Creating a team
development repository) from the provided template.

	Read Using Git.

	Read the Deliverables section, and with your team consider
dependencies between ‘tasks’ in the deliverables and allocate
independent tasks to a team member (Project planning).

	Start implementing your tasks (Editing and executing Python code).

Tip

Start simple and work in small steps. It is much easier to add
functionality to a working program than to fix a complicated
non-working program.

Note

When developing your programs, you may need to review the activity
notebooks from Michaelmas Term.

1.1. Development environment

Note

Experienced developers have their preferred tools and development
environments. If you are experienced with Git, Python and using
editors, you are free to use your preferred tools.

The following procedures and tools are suggested.

1.1.1. Option 1: Web-based environment

You can use GitHub Codespaces, which provides a development environment
in your browser.

1.1.2. Option 2: Local software installation

	Install Visual Studio Code (https://code.visualstudio.com/).

Visual Studio Code will provide instructions on how to install
git and python when you need them. Otherwise, instructions at
https://code.visualstudio.com/docs/sourcecontrol/overview and
https://code.visualstudio.com/docs/languages/python.

1.1.3. Testing your Python installation

	Create a file in VS Code with the extension .py and enter
some simple Python code, e.g.:

print("Testing Python install")

	Click the ‘play’ button at the top of the open file.

1.2. Creating a team development repository

	Log into GitHub (create an account using your @cam.ac.uk email
address, or use any other GitHub account you wish).

	One team member only: The template start code is at
https://github.com/CambridgeEngineering/PartIA-Flood-Warning-System.
Click on the green “Use this template” button, select “Create a new
repository” give your new repository a name. Make your repository
“private”. In the “Settings” section for your repository add your
team members as “Collaborators” and share the name of the repository
with team members.

	Clone your team’s repository using VS Code “Source control”.

	From VS Code, execute file Task1A.py. You should see some output
on river level monitoring stations.

Note

The Python code uses some modules (requests and dateutil)
that are not part of the Python standard library. If you see an error
that a module is missing, you can install the module using pip.
Use:

pip install requests python-dateutil

in the terminal window.

1.3. Editing and executing Python code

	Launch VS Code and open your local code repository directory.

	Open/create the files you wish to edit. ‘Module’ files should go in
the directory floodsystem/. The Task*.py files should go in
the root directory of the repository.

	Use right-click -> ‘Run Python File in Terminal’ on the program text
in VS Code to run the Python code.

As you develop you programs, commit your changes (using Git) and push
these to your shared online repository. If you are unsure how often to
commit and push changes, err on the side of committing and pushing
frequently. Commit at least upon the completion of each task.

1.4. Automated testing

The starter template repository includes the file
.github/workflows/pythonapp.yml which configures automated testing,
known as continuous integration (CI), on GitHub. Against each commit
you will see on the GitHub repository page whether or not the tests are
passing.

Edit .github/workflows/pythonapp.yml to run your deliverables in the
test system and to add code tests to your test suite.

1.5. Project planning

	Examine the first few project deliverables, and divide independent
tasks amongst team members. Each team member can then work on tasks
independently.

	Communicate frequently with team members to update them on your
progress, and seek help from a team member if required.

	As tasks are completed review each others work and provide feedback.

	As you progress through the tasks, periodically assess which tasks
are independent and allocate these to a team member.

2. Development tools and practices

2.1. Working in a team

Most software is developed in teams, and working effectively in a
development team requires certain skills and practices. At a planning
level:

	Examine the required tasks, then discuss and decide on the
dependencies between tasks. To start, allocate independent tasks to
team members.

	Let your team know when a task or piece of functionality is
complete.

	Discuss frequently.

At the implementation level:

	Use a version control system, such as Git. With Git:

	Work that is committed cannot be lost (unless you try really
hard) - your team members cannot accidentally delete your code.

	Commit changes frequently and in small chunks. This makes clear to
others what you are working on, and any conflicts will be easier to
resolve.

	It is easy to switch between computers.

	Add tests as functionality is developed. This:

	Builds confidence that your implementation is correct.

	Can detect if a change by you or a team member has affected your
implementations. (One of the most frustrating situations in team
development is when a change by another team members breaks your
carefully constructed functionality.)

2.2. Using Git

Git [https://git-scm.com/] is modern widely used version control
system (VCS). A version control system tracks changes to source code.
It can show what has changed, and who has made changes and when they
made them. Git is very powerful and can be challenging to learn.
Elementary Git usage for getting started is summarised below.

Git is generally used from the command line (terminal), but here are
tools that provide graphical interfaces and some editors (e.g. VS Code)
have built-in Git support.

2.2.1. VS Code

VS Code provides helpers for the operations in the following section.

2.2.2. Command-line use

2.2.2.1. Creating or cloning a repository

To clone a repository (typically hosted by an online service), e.g.:

git clone https://github.com/CambridgeEngineering/PartIA-Computing-Michaelmas.git

The location for a particular repository can be found on the online
repository page.

To create a new repository, create a directory and execute in the
directory the command:

git init

2.2.2.2. Adding a new file or adding file changes to the staging area

The command:

git add myfile.py

instructs Git that we want to track the file myfile.py, or if the
file is already tracked that we will want to add any changes to the
repository history.

2.2.2.3. Committing changes to the project history

The commit command commits changes to the project history, and each
commit has a ‘commit message’ associated with it:

git commit -m "Complete Task 1C"

It is possible at any time to see the changes between any two commits,
and to revert a repository to a particular commit.

2.2.2.4. Collaborating: merging changes

To fetch remote changes into your repository, e.g. changes made by your
team mate:

git pull

In general, you should commit your changes before using pull.

To send your changes to the remote server:

git push

If team members have ‘pushed’ changes, you will need to use git pull
before you can push. Once you have pushed changes, other team members
will receive your changes when they next ‘pull’.

2.2.2.5. Seeing changes in your working directory

The command:

git diff

shows any changes to your code since the last commit. The command:

git status

will show any changes to files that are (a) tracked but have changed
since the most recent commit, and (b) files that are not tracked (have
not been added using git add).

2.2.2.6. Project history

The log of project commits is displayed by the command:

git log

The output will include the commit messages and the author of each
commit.

Project history is shown by online services, like GitHub, and this the
simplest way to examine project change. It is also possible to add
comments and suggestions on particular code changes to discuss with team
members.

2.2.2.7. How often should I commit changes?

Often. Structure your work into small chunks, and commit after
completing each ‘chunk’. At the very least, you should commit changes at
the completion of each Task in the Deliverables section.

Also, pull and push frequently.

2.2.2.8. Getting help with Git

There are many online resources for learning Git, and search engines for
very useful. Helpful tutorials for beginners are:

	https://guides.github.com/introduction/git-handbook/

	https://code.visualstudio.com/docs/sourcecontrol/overview

	https://learngitbranching.js.org/

	https://swcarpentry.github.io/git-novice/

2.3. Test framework

Testing is critical for high quality software development, and there are
many tools for helping with this. In this project you will use pytest [http://docs.pytest.org/]. Some tests are in the project starter
repository.

Write tests as you go, and run the tests frequently to check that
nothing has been inadvertently broken.

2.3.1. Running tests

pytest is very simple to use:

	Put tests in files starting with test_, e.g. test_data.py.

	In the test file, prefix test function with test_, e.g.:

def test_sum():
 a, b = 2, 3
 assert a + b == 5

	To run all tests in all test_*.py files in a directory, use:

pytest .

To run all tests in the file test_data,py:

pytest test_data.py

pytest will print a summary of the number of tests run, with the
number that pass and the number that fail.

2.3.2. Writing tests

Aim to have at least one test for every function in your library. Some
tests will just check that a function can be called successfully, e.g.:

import mymodule

def test_call():
 x = mymodule.do_something(4)

More useful test will check results, e.g.:

import mymodule

def test_my_sum():
 sum = mymodule.sum(7, -8)
 assert sum == -1

Take care when comparing floating point values, since round-off errors
can make precise comparison difficult. Use rounding to compare floats,
e.g:

import math

def test_math_sine():

 x = math.sin(0.0)
 assert round(x, 8) == 0 # 'round' keep 8 digits after the decimal point

 pi = 3.14159265359
 x = math.sin(pi)
 assert round(x, 8) == 0

 pi = 3.14159265359
 x = math.sin(pi/2.0)
 assert round(x - 1, 8) == 0

3. Help and feedback

Get started early to give your team time to seek feedback and resolve
issues. Issues/bugs are a feature of all software development and
engineering.

There is a significant design component to this project. There is no
one ‘best’ solution.

3.1. Help

Help channels for the activity are:

	Peer support - this is encouraged, but be sure that you understand
what you are doing.

	Moodle forum.

	Help Desk (see Moodle page for details).

3.2. Feedback

You can get feedback on your work from demonstrators at the Help Desk.

4. Suggestions for experienced developers

These development topics are optional, but are suggested for those who
are already experienced with Git and Python and those who wish to
develop their skills further.

Branching with Git and pull requests

Use a Git branch for each task, and merge your topic branch into
master once it is complete and tests pass. Use merge requests to
merge code into the master branch.

Code style

Use flake8 [http://flake8.pycqa.org/] for static analysis and to
check your code for style.

Test coverage

Check your test coverage using pytest-cov [http://pytest-cov.readthedocs.io/].

Installing the module and using from a Jupyter notebook

The template repository has a setup.py file which allows the
floodsystem module to be installed. Install the module from the
project directory using:

pip install . --user

Once the module has been installed, you should be able to import it
from any location. Try using your module from a Jupyter notebook.

5. Learning objectives and assessment

5.1. Learning objectives

Development skills

	Approaches for working in teams.

	Designing a working library for specific technical requirements.

	Working to a realistic project specification.

	Effective use of version control.

	Devising tests.

Programming skills

	Reinforcement of skills developed in Michaelmas Term.

	Introduction to user modules and multi-file library implementations.

	Working with user-defined objects.

5.2. Assessment guidelines

The following points will be used in assessing your implementation.
Markers will want to view your Git log.

Code

	Programs should execute without error.

	Interfaces should conform to the specification in the
Deliverables.

	Programs should be correct.

	Clarity and structure of the implementations.

	Appropriate re-use of functions.

Documentation and process

	Documentation of the library (both docstrings and comments in the
code).

	Unit tests.

	Effective use of version control (commits of small steps with clear
messages).

	Balance of work within the team (as shown by the Git log).

	Use of continuous integration.

Index

 nav.xhtml

 Table of Contents

 		
 Part IA Flood Monitoring and Warning System

 		
 Requirements

 		
 Language and library structure

 		
 Documentation

 		
 Development practices

 		
 Data source

 		
 Deliverables

 		
 Milestone 1

 		
 Task 1A: build monitoring station data

 		
 Task 1B: sort stations by distance

 		
 Task 1C: stations within radius

 		
 Task 1D: rivers with a station(s)

 		
 Task 1E: rivers by number of stations

 		
 Task 1F: typical low/high range consistency

 		
 Optional extensions

 		
 Milestone 2

 		
 Task 2A: fetch real-time river levels

 		
 Task 2B: assess flood risk by level

 		
 Task 2C: most at risk stations

 		
 Task 2D: level data time history

 		
 Task 2E: plot water level

 		
 Task 2F: function fitting

 		
 Task 2G: issuing flood warnings for towns

 		
 Optional extensions

 		
 Getting started

 		
 Development environment

 		
 Option 1: Web-based environment

 		
 Option 2: Local software installation

 		
 Testing your Python installation

 		
 Creating a team development repository

 		
 Editing and executing Python code

 		
 Automated testing

 		
 Project planning

 		
 Development tools and practices

 		
 Working in a team

 		
 Using Git

 		
 VS Code

 		
 Command-line use

 		
 Test framework

 		
 Running tests

 		
 Writing tests

 		
 Help and feedback

 		
 Help

 		
 Feedback

 		
 Suggestions for experienced developers

 		
 Learning objectives and assessment

 		
 Learning objectives

 		
 Assessment guidelines

_static/minus.png

_static/plus.png

_static/file.png

